

General Certificate of Education

Mathematics 6360

MD02 Discrete 2

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
\sqrt{or} ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	ŌE	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				
		-					

Application of Mark Scheme

mark as in scheme

zero marks unless specified otherwise

No method shown:

Correct answer without working Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed outmark both/all fully and award the mean
mark rounded down
award credit for the complete solution only1 complete and 1 partial attempt, neither crossed outaward credit for the complete solution onlyCrossed out workdo not mark unless it has not been replacedAlternative solution using a correct or partially correct methodaward method and accuracy marks as
appropriate

Q			Solu	tion		Marks	Total	Comments
1(a)	Hung	arian alg	gorithm	minimi	ses	E1		
	20– <i>x</i>	gives m	easure c	of questi	ons not			
	corre	ct which	needs 1	ninimis	ing	E1	2	
	2		•	-				
(b)	3	l	2	5	4			
	0	2	5	1	3			
	7	3	3	4	6	B1		Array giving 20– <i>x</i>
	8	4	2	5	6			
	6	4	5	4	5			
	2	0	1	4	3	M1		Reduce rows
	0	° 2	5	1	3			
	Δ	0	0	1	3			
	6	2	0	2	5 1	Δ1.Δ		ft their $20 - r$ matrix
	2	2	1	0	1	AIV		It then $20 - x$ matrix
	2	0	1	0	1			
	2	0	1	4	2	M1		Reduce columns
	0	2	5	1	2			
	4	0	0	1	2	A1		CSO
	6	2	0	3	3			
	2	0	1	0	0			or I
	Zeros So ad	s can be ljustmen	covered t by 1	with or	nly 4 lines	M1		
								or
	2	0	1	3	1			
	0	2	5	0	1			
	4	0	0	0	1			
	6	2	0	2	2	A1		
	3	1	2	0	0			
		. ·	,· •					
	Matc	ning on j	particul	ar zeros		MI		selection is made
	Les-	Tennis						3 correct matchings B1
	Mel -	Athletic	cs					rest correct B1
	Nick-	- Swimm	ning					
	Ollie-	- Footba	11					Award marks here in whichever way
	Pete-	Golf				A1	9	benefits candidate most.
					Tatal		11	
					1 otal		11	

Q	Solution				Marks	Total	Comments
2(a)	SAET	has max	imum da	y journey of	M1		Reasonable understanding
	9 hrs v	whereas	for SAD7	max day journey			
	is 10 h	nrs			A1	2	with 9 and 10 specifically mentioned
(b)							
(U)	Stage	Initial	Action	Value	M1		General idea of stage and state
	Stage	State	netion	value	1411		General field of stage and state
	1	D	DT	5*			
		Ε	ET	7*	A1		First stage correct (may be reversed)
	_		. –				
	2	A	AD	$\max(10,5) = 10$	M1		Idea of minimax
			AE 1	$\max(9, 7) = 9*$	AI		One pair of actions correct
		В	BD 1	max(95) = 9			
		D	AE 1	$\max(9, 3) = 8^*$			
		С	CD :	max(10,5) = 10	A1		All values in second stage correct
			CE 1	$\max(9,7) = 9^*$			
	2	c	C 4	$m_{0}(7,0) = 0$			
	3	3	SA SR r	$\max(7,9) = 9$ $\max(8,8) = 8*$			
			SC 1	$\max(0,0) = 0$ $\max(9,10) = 10$	A1		
			50 1	111(),10) 10			
	Worki	ing back	along * v	values to find	M1		All values correct at all 3 stages
	Minim	nax route	e is SBET	Γ	A1	8	
							Complete/enumeration or network with
							each stage and state carefully described if
							Novimum morte M1 A1
							Minimax route SBET marks may also be
							earned if not finding minimum time
							through the network. M1 A1
				Total		10	

MD02 (cont)

MD02 (co	MD02 (cont)							
Q	Solution	Marks	Total	Comments				
3	$\begin{bmatrix} A \\ 0 & 6 \end{bmatrix}$ $\begin{bmatrix} C \\ 6 & 13 \end{bmatrix}$ $\begin{bmatrix} B \\ 0 & 6 \end{bmatrix}$ $\begin{bmatrix} B \\ 0 & 6 \end{bmatrix}$ $\begin{bmatrix} F \\ 6 & 2 \end{bmatrix}$		G 23 29	I 29 34 J 34 36 H 29 34				
(a)	Network	M1 A3	4	SCA -1 ee				
(b)	Forward pass All correct	M1 A1	2					
(c)	Backward pass All correct	M1 A1	2					
(d)(i)	Project completion time 36 hours	B1√	1					
(ii)	Critical path BCEGHJ	M1 A1		SCA All correct				
	Earliest start + activity duration = latest finish time	E1	3					
(e)(i)	<i>I</i> now has new earliest time 29+3	M1		Extra 3 hours on edge <i>HI</i> or new activity between <i>H</i> and <i>I</i> of duration 3				
(ii)	= 32 <i>I</i> now becomes critical and increases <i>J</i> earliest start time to 35	A1 M1	2					
	New completion time is 37 hours	A1	2					
	lotal		16					

MD02 (C	Cont)							
Q	Solution	Marks	Total	Comments				
4(a)	$4x + 5y \leqslant 36$	M1		SCA at LHS and RHS				
	$2x + y \leq 12$ $5x + 2y \leq 35$	A1	2	All correct with correct inequalities				
(b)(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		Identifying pivot and possibly dividing by 2				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m1 A1		Row operations Correct tableau				
	Next y pivot on 3	M1						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m1 A1		Row operations Correct tableau				
	Optimal since no negative numbers in top row	B1	7					
(ii)	P = 20 x = 4, y = 4	B1√ B1√	2	FT ONLY if no negs in top row				
(iii)	r = 0, s = 0, t = 7 at optimum	B1√	1					
	Total		12					

MD02 (Cont)

MD02 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		Either marginal row or column all values correct
	Since $3 \neq 4 \Rightarrow$ no stable solution	A1	3	
(b)	P_1 dominates P_3 ; (1,2,3) < (4,3,5)	E1	1	
	So it is unwise to play P ₃			
(c)	P chooses P_1 with probability p So chooses P_2 with probability $1-p$			
	Expected gains when Q plays $Q_1: 4p - (1-p) = 5p - 1$	M1		Attempt at at least 2
	$Q_2: 3p +5 (1-p) = 5 - 2p$ $Q_3: 5p -2 (1-p) = 7p - 2$	A1		All 3 correct (simplified)
	Plot expected gains against p for $0 \le p \le 1$	M1		
	5 0 1 p	A1		
	Choose highest point of region below lines			
	5p - 1 = 5 - 2p	M1		
	leading to $p = \frac{6}{7}$	A1		
	Therefore P plays P ₁ with probability $\frac{6}{7}$			
	and plays P_2 with probability $\frac{1}{7}$	B1√	7	
	Total		11	

MD02 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	9+7+0+9+13=38	B1	1	
(ii)	Maximum flow is less than or equal to 38	M1 A1√	2	< their value of cut ≤ 38 M0 for "equals" their cut
(b)	SUYWTflow of 9SXYZTflow of 13	B1 B1	2	the for equilis then out
(c)(i)	Indicating flows from (b) on network $ \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & $	M1		Preferably as backward flows
	RouteFlowSUYWT9SXYZT13SUVWT7SXVZT7SXVWZT1			
	SUVWT 7 SXVZT 7 SXVWZT 1	M1A1 m1A1 A1	6	
(ii)	Network showing maximum flow Several possibilities	B1		Or $\{S, U, X \mid V, W, Y, Z, T\}$
(iii)	Maximum flow is 37 Attempt to find cut through saturated arcs	B1 M1	2	
	Cut through UV, UY, XV, XY	A1	2	
	Total		15	
	Total		75	